# **Sample and Hold Amplifiers**

# Lab Report

See separate report form located on the course webpage. This form should be completed during the performance of this lab.

# **Objectives**

- 1) To construct and operate a Sample and Hold circuit using the LF398
- 2) To measure DROOP RATE and GAIN ERROR
- 3) To construct and operate a 1 Bit A/D Converter

#### **Materials**

### **General Material**

| 1     | Breadboard                                         |
|-------|----------------------------------------------------|
| 2     | Dual Power Supply (+15 V and -15 V)                |
| 2     | Oscillator or Function Generator for signal source |
| 1     | Pulse Generator                                    |
| 1     | Voltmeter                                          |
| <br>4 |                                                    |

□ 1 Oscilloscope

# Sample and Hold Circuit

| 1 | 741 Linear IC             |              |               |
|---|---------------------------|--------------|---------------|
| 1 | LF398 Sample and Hold cir | rcuit        |               |
| 1 | 10 pF Capacitor           | (10)         | smallest      |
| 1 | 100 pF Capacitor          | (101)        |               |
| 1 | 0.001 µF Capacitor        | (102)        |               |
| 1 | 0.01 µF Capacitor         | (103)        |               |
| 1 | 0.1 µF Capacitor          | (104)        | Ţ             |
| 1 | 1.0 μF Capacitor          | (105)        | largest       |
| 3 | 10 k ohm Resistors        | (Brown – Bla | ack – Orange) |
| 1 | 10 k ohm Potentiometers   |              | •             |

#### WARNINGS AND PRECAUTIONS

- 1) Never install or remove the components from an energized circuit
- 2) Do not construct circuits while energized
- 3) Follow electrical safety precautions

### **Background Information**

The purpose of the Sample-and-Hold amplifier is to freeze an analog voltage of the instant the Hold command is issued and make that analog voltage available for an extended period of time allowing for A/D converter and other applications to utilize the stored voltage.

### Pre-Lab Preparation

- 1. Download Lab # 1 from the course website. Read and understand the lab.
- 2. Download LF398 Data Sheet from the course Webpage

#### **Procedure**

# Objective 1. SAMPLE AND HOLD

**a.** Assemble the circuit shown in Figure 1. Values are as follows:

 $\begin{array}{rll} V+ &=& 15 \mbox{ volts (Use dual power supply)} \\ V- &=& -15 \mbox{ volts (Use dual power supply)} \\ C_h &=& 100 \mbox{ pF} \end{array}$ 

- **b.** Apply a 5 Vpp Sine wave of 10 Hz to the Analog input. Use the Oscillator or Function Generator for the signal source. NOTE: Analog input frequency can range from 10 Hz to 5 KHz. Record the actual value used.
- **c.** Apply a 5 Vpp differentiated square wave of 2 KHz to the sample and holding time signal, by using a Pulse Generator.

- **d.** Record the actual sample and holding time duty cycle (frequency). Make note of the output signal. Compare the input signal to that of the output.
- **e.** Change the sample and holding time (duty cycle). Make note of the output signal changes as the duty cycle changes.
- f. Repeat Step 1.d. with an Analog input frequency of 100 Hz.
- g. Repeat Step 1.d. with an Analog input frequency of 1 KHz.

### OBJECTIVE 2. DROOP RATE AND GAIN ERROR

**a.** Assemble the circuit shown in figure 1. Values are as follows:

 $V_{+} = 15$  volts (Use dual power supply)  $V_{-} = -15$  volts (Use dual power supply)  $C_{h} = 10 \text{ pF}$ 

- **b.** Let the analog input = 1 VDC from a DC power supply (be sure to disconnect the function generator).
- **c.** Measure the output (Vo) with a DC voltmeter while the 5 Vpp 2 kHz differentiated square wave is clocking the LF398 IC.
- **d.** Disconnect the clock input, and observe Vo on a DC voltmeter for 60 seconds. Record Vo at the end of 60 seconds.

| TABLE 1<br>DROOP RATE |  |         |         |  |                         |  |  |  |  |
|-----------------------|--|---------|---------|--|-------------------------|--|--|--|--|
| C <sub>h</sub> (Hold  |  | Voltage | Voltage |  | Droop Rate (Calculated) |  |  |  |  |
| Capacitor)            |  | Start   | Comp    |  |                         |  |  |  |  |
|                       |  |         |         |  |                         |  |  |  |  |
| 10 pF                 |  |         |         |  |                         |  |  |  |  |
| 100 pF                |  |         |         |  |                         |  |  |  |  |
| 0.001 µF              |  |         |         |  |                         |  |  |  |  |
| 0.01 μF               |  |         |         |  |                         |  |  |  |  |
| 0.1 μF                |  |         |         |  |                         |  |  |  |  |
| 1.0 μF                |  |         |         |  |                         |  |  |  |  |

e. Calculate the droop rate in volts/sec.

- **f.** Repeat Steps 2.b. through Step 2.e. by replacing C<sub>h</sub> with the different values for the hold capacitor as indicated in TABLE 1. Record the output droop rate for each capacitor used.
- **g.** Using the same circuit, Figure 1, with  $C_h = 0.001 \mu F$ , observe the output transient at start of sample mode. (Sample rate: 8kHz)
- **h.** Test for Gain Error (input vs output). Compare with data sheet values. Gain error is calculated as follows:

$$GAINERROR = \frac{V_{OUT} - V_{IN}}{V_{IN}} * 100\%$$

# OBJECTIVE 3. 1 BIT A/D CONVERTER

**a.** Assemble the circuit shown in Figure 2. Values are as follows:

 $V_{+} =$  15 volts (Use dual power supply)  $V_{-} =$  -15 volts (Use dual power supply)  $C_{h} =$  100 pF

b. Apply a 5 Vpp Sine wave of 1 KHz to the Analog input. Apply a 5 Vpp differentiated square wave of 2 KHz to the sample and holding time signal, by using a Pulse Generator. Set the comparator to 70% of the sampled signal. Output will be high (digital 1) when input signal reaches the reference voltage on the 741 output.

#### SUMMARY:

This lab provided an introduction to the Sample-and-Hold amplifier. The Sample-and-Hold amplifier freezes an analog voltage at the instant the Hold command is issued and makes that analog voltage available for an extended period of time allowing for A/D converter and other applications to utilize the voltage.

#### Lab Notebook Requirements:

1. Ensure that you have recorded all the data requested during the lab in your lab notebook as well as your lab report.

#### Lab Report:

1. Use template provided on the Class Web Site.

#### Lab Questions:

1. None

# Figure 1 – Sample and Hold Circuit



# Figure 2 – One (1) Bit A/D Converter

